ARENS REGULARITY OF PROJECTIVE TENSOR PRODUCT

نویسندگان

چکیده

In this paper, we study approximate identity properties, some propositions from Baker, Dales, Lau in general situations and establish relationships between the topological centers of module actions factorization properties with results group algebras. We consider under which sufficient necessary conditions Banach algebra $A\widehat{\otimes}B$ is Arens regular.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arens-irregularity of tensor product of Banach algebras

We introduce Banach algebras arising from tensor norms. By these Banach algebras we make Arensregular Banach algebras such that tensor product becomes irregular, where is tensor norm. Weillustrate injective tensor product, does not preserve bounded approximate identity and it is notalgebra norm.

متن کامل

Arens-regularity of algebras arising from tensor norms

We investigate the Arens products on the biduals of certain algebras of operators on nonreflexive Banach spaces. To be precise, we study the α-nuclear operators, where α is a tensor norm. This includes the approximable and nuclear operators, and we use these, together with the 2-nuclear operators, as motivating examples. The structure of the two topological centres of the bidual are studied, an...

متن کامل

Quotient Arens regularity of $L^1(G)$

Let $mathcal{A}$ be a Banach algebra with BAI and $E$ be an introverted subspace of $mathcal{A}^prime$. In this paper we study the quotient Arens regularity of $mathcal{A}$ with respect to $E$ and prove that the group algebra $L^1(G)$ for a locally compact group $G$, is quotient Arens regular with respect to certain introverted subspace $E$ of $L^infty(G)$. Some related result are given as well.

متن کامل

Arens regularity and derivations of Hilbert modules with the certain product

Let $A$ be a $C^*$-algebra and $E$ be a left Hilbert $A$-module. In this paper we define a product on $E$ that making it into a Banach algebra and show that under the certain conditions $E$  is Arens regular. We also study the relationship between derivations of $A$ and $E$.

متن کامل

Arens regularity of inverse semigroup algebras‎

‎We present a characterization of Arens regular semigroup algebras‎ ‎$ell^1(S)$‎, ‎for a large class of semigroups‎. ‎Mainly‎, ‎we show that‎ ‎if the set of idempotents of an inverse semigroup $S$ is finite‎, ‎then $ell^1(S)$ is Arens regular if and only if $S$ is finite‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Facta Universitatis

سال: 2021

ISSN: ['1820-6425', '1820-6417']

DOI: https://doi.org/10.22190/fumi2005251s